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ABSTRACT 
 

The aim of this work is to find the solution of linear and nonlinear boundary value problem using genetic algorithm. 

A continuous genetic algorithm has been design and applied to the solution of fourth-order nonlinear boundary 

value problem. The genetic algorithm solves the differential equation by a process of evaluating the best fittest 

solutions curve from a family of randomly generated solution curves. This method is applicable to both the linear 

and nonlinear differential equation of fourth-order. Numerical results presented in the work illustrate the 

applicability of the genetic algorithm for fourth-order linear and nonlinear boundary value problem. 

Keywords : Genetic Algorithm, Fourth-Order Nonlinear Differential Equation, Centre-Difference Formula, 

Electrostatically Microcantilever Beam 

 

I. INTRODUCTION 

 

Most fundamental laws of science are based on models 

that explain variation in physical properties and state of 

system described by differential equations. To find the 

solution of differential equation is difficult job. The 

difficulty is increase as the order of differential equation 

and nonlinearity is increase. Therefore, solving the 

nonlinear differential equation is perhaps the most 

difficult problem in all of numerical computation. 

 

The work presented in this paper is motivated by the 

success of using continuous genetic algorithm for 

solution of second-order, two-point linear and nonlinear 

boundary value problems. Although there are many 

possible methods or techniques are available for solving 

linear and nonlinear differential equation problems, 

such as, finite element method, soothing method, Ritz 

energy technique, etc. but they are difficult to 

implement or they required some more advanced 

mathematical tools. That tools are may be root finding 

technique or solution of some initial value problem. 

While switching from linear to nonlinear problem, they 

also required any modification. 

 

1.1 Differential equation 

A differential equation is an equation where the 

unknown is a function and both the function and its 

derivatives may appear in the equation. Differential 

equations are essential in the description of nature by 

physics. The central part of many physical theories is a 

differential equation: Newton’s and Lagrange equations 

for classical mechanics, Maxwell’s equations for 

classical electromagnetism, Schrodinger’s equation for 

quantum mechanics, Einstein’s equation for the general 

theory of gravitation. In addition, a problem occurs in 

the field of engineering and science such as electric 

power generation, optimization and path-planning 

application. Many of these problems are in the form of 

higher order differential equation.  

 

Although many of the current methods for solving 

ordinary differential equations were developed around 

the turn of the century, the past 15 years or so has been 

a period of intensive research. The emphasis of this 

survey is on the methods and techniques for solving 

ordinary differential equations are based on genetic 

algorithms. The application of genetic algorithm in the 

field of numerical analysis is not new, for solving fluid 

flow problem genetic algorithm used by Pryor [1] and 

Pryor and Cline [2]. D. A. Diver [3] introduce a genetic 

algorithm for the solution of linear and nonlinear 

ordinary differential equation. Chaudhury and 

Bhattacharyya [4] used genetic algorithm to solve the 

Schrödinger equation. A hybrid scheme of genetic 

algorithm and Newton’s method for solving a system of 
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nonlinear equation introduced by Kare et al [5]. 

Raudensky et al [6] present a genetic algorithm for 

solving the one-dimensional inverse heat conduction 

problem. A novel method based on continuous genetic 

algorithm is introduced by Z. S. Abo-hammour et al [7] 

for the solution of the second-order, two-point boundary 

value problem. Advanced continuous genetic algorithm 

and their application in the motion planning of robotic 

manipulators are proposed by Z. S. Abo-Hammour et al 

[8]. A numeric genetic algorithm is introduced by Cong 

P. Li T. [9]. M. W. Gutowski proposed a smooth genetic 

algorithm [10] applied for finding the distribution of 

magnetic nanocrystallites.  

 

1.2 Genetic algorithm 

 

Genetic algorithm (GAs) is stochastic population-based 

search techniques. GAs operates on a population of 

potential solutions applying the principal of survival of 

the fittest to produce better approximation to a solution. 

The appeal of GAs comes from their simplicity and 

robustness as well as their power to discover good 

solutions for complex high dimensional global 

optimization problems that are very difficult to handle 

by more conventional techniques (Forrest and Mitchell, 

1993). They have performed well in a number of diverse 

application such as the solution of ordinary differential 

equations [3], solution to system of nonlinear equations 

[5], application of genetic algorithm and CFD for flow 

control optimization [11], collision-free Cartesian path 

planning of robot manipulation [12], numerical solution 

of boundary value problem [7]. 

 

The genetic algorithm is based on the triangle of genetic 

reproduction, evaluation and selection [13]. Genetic 

reproduction is performed by two genetic operators: 

crossover and mutation. Evaluation is performed by 

fitness function and selection is based on relative fitness. 

 

1.3 Electrostatically microcantilever beam 

 

Now a day wide range of research is going on the 

micro-electro mechanical system. The geometry of 

micro-actuator influences the mechanical stiffness and 

electrostatic force distribution. Electrostatically actuated 

microdevices are mostly susceptible due to an 

operational instability. A novel closed-form empirical 

relation to predict the static pull-in parameters of 

electrostatically actuated microcantilevers having linear 

width variation proposed by M. M. Joglekar and D. N. 

Pawaskar [14]. Static and dynamic analysis of 

electrostatically actuated microcantilever using the 

spectral element method is proposed by P. V. Dileesh, S. 

S. Kulkarni, D. N. Pawaskar [15]. 

 

II. METHODS AND MATERIAL 
 

2.1 Continuous genetic algorithm 

 

The solution curves of boundary value problems are 

smooth in nature. So, continuous genetic algorithm is 

used in this work. The construction of a genetic 

algorithm is based on the following conditions- 

 

1. The genetic representation of potential problem 

solution, 

2. A method for creating initial population of solution, 

3. The design of the genetic operators, 

4. The definition of the fitness function, 

5. The setting of system parameters 

 

Each of the above components greatly affects the 

solution obtained as well as the performance of the 

genetic algorithm. The genetic operators that are use in 

this work are describing below.  

 

2.1.1 Initialization 

 

The implementation of a genetic algorithm starts with 

generating a population of possible solutions. For the 

solution of boundary value problem the initialization 

function is smooth and it should satisfied the given 

boundary values. Two smooth initialization function: 

the Gaussian function and the tangent hyperbolic 

function are used [7].  

 

2.1.1.1 Tangent hyperbolic function 

 

The tangent hyperbolic function is used in this work is 

given below. This function has some limitation for a 

particular type of boundary condition. If the nodal 

values of the extreme end are same, it will not work. In 

that case, the Gaussian function is applied, which is 

described in next section. 

 

           (      (
   

 
)) 

 

For all 1 ≤ i ≤ N and 1 ≤ j ≤ Np  
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Where P(i,j) is the value of the i
th
 node for the j

th
 parent. 

µ is a random number within the range [11/4, 33/4] and 

it specified the centre of the function, σ is a random 

number within the range [1, 11/3] and it specifies the 

degree of dispersion [7]. Np is the number of initial 

population. The convergence speed is depending on the 

initialization function. If the initialization is closer to the 

final solution the convergence speed is faster and from 

study it is seen that after few generations convergence 

speed is governed by the selection, crossover and 

mutation operators. 

 

2.1.1.2 Gaussian function 

 

The Gaussian function which is used in this work for 

special boundary condition, is given as [7] 

 

          (
       

   ) 

 

For all 1 ≤ i ≤ N and 1 ≤ j ≤ Np  

 

Where P(i,j) is the value of the i
th
 node for the j

th
 parent, 

µ is a random number within the range [11/4, 33/4] and 

it specified the centre of the function, σ is a random 

number within the range [1, 11/3]. 

 

2.1.2 Evaluation 

 

Evaluation is performed by the mean of fitness function. 

It is a measure of quality of the individual in the 

population. The fitness function is defined as  

 

     
 

   
   

 

And R is overall residual. The main goal of the genetic 

algorithm is maximize the fitness function F. 

 

2.1.3 Selection 

 

The population is arranged in ascending order based on 

their relative fitness function value. The selection of 

population is rank based. The maximum fitness function 

values have highest rank and minimum fitness function 

values have lowest value. The bottom 50% of the 

population is discarded and the remaining 50% are 

selected for reproduction. The overall quality of the 

population is depending on the selection mechanism and 

its increase from one generation to the next. 

2.1.4 Crossover 

 

Crossover is the genetic algorithm operator that 

attempts to mix each pair of population selected as 

parents, to create the likelihood of keeping the good 

properties of each parent population in the offspring 

children [7]. Crossover provides the means by which 

valuable information is shared among the population. 

Crossover operator is implemented in several works in 

the literature. In this work crossover operator is 

expressed as 

 

                 (      )                    

                                          

           (      (
   

 
))    

 

For all 1 ≤ i ≤ N 

 

Where P(i,j), P(i,k), CL and CL+1 represent the two 

parents chosen from the mating pool and the two 

children obtained through crossover operator 

respectively, w represent the crossover weighting 

function within the range [1, 11/3]. The crossover 

operator also maintains the smoothness of the solution 

curves. 

 

2.1.5 Mutation 

 

Mutation operator has two important roles during the 

evaluation process in a genetic algorithm. First is to 

introduce unexplored genetic material to the population. 

Second is to maintain the diversity of the candidate 

solution in a population over the generations, preventing 

premature convergence of the genetic algorithm to 

suboptimal solution [7]. In this work mutation operator 

is expressed as 

 

                          

         (
       

   )                

 

For all 1 ≤ i ≤ N, 1 ≤ j ≤ Np  

 

Where C(i,j) represent the j
th
 child produced through the 

crossover process,         is the mutated j
th
 child, M is 

the Gaussian mutation function and d represent a 

random number within the range [-1,1]. 

 

 

 

2.1.6 Elitism operator 
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After evaluation process, the population is going to 

change in every generation because of the crossover and 

mutation operators. Due to this the best information or 

population is vanish. To overcome that problem elitism 

operator is applied. Elitism operator insures that in the 

next generation the best-fitted individual is not less than 

previous fitted individual.  

 

2.1.7 Extinction and immigration operator 

 

After few numbers of generations, the population is 

going to stagnate, due to repetitions of the crossover and 

mutation operator. To overcome this problem extinction 

and immigration operator is applied to the population. 

In this process, half of the population is generated by 

same initial population function [7]. The another half 

population is generated by this formula that is given as 

 

                      

For Np /2+1 ≤ j ≤ Np  

 

Where P(i,j) is the j
th 

parent generated by above operator, 

P(i,1) represent the best fitted population, M and d has 

already described in previous section. 

 

2.1.8 Scaling operator  

 

For solving fourth-order linear and nonlinear boundary 

value problem by genetic algorithm, after few number 

of generations the shape of the curve is generated but 

the exact solution is far away. To generating exact 

solution scaling operator is introduce. This operator is 

given as 

 

                     

For all 1 ≤ i ≤ N and 1 ≤ j ≤ Np  

 

Where         is the j
th
 parent generated by scaling 

operator,        represent the previous generated 

population and   is a random number between Fmax and 

1. Fmax is the maximum value of fitness function so far 

found during the evaluation process. 

 

2.1.9 Replacement 

After the application of genetic operators to the initial 

(parent) population, a new population is generated. The 

previous population is replaced by new generated 

population, which is better fitted. This is also known as 

“life cycle” of the population. 

 

2.1.10 Termination 

 

The process described is iterated until an acceptable 

solution is found. The termination criterion is defined 

by the user, it could be either the difference in fitness 

value of few subsequent generations or a fixed number 

of generations which the user thinks, would provide a 

reasonable acceptable solution. In this work, the 

maximum fitness value is set to be 0.99999 and the 

maximum number of generation is set to be 500000. 

The genetic algorithm is terminating when one of the 

above criterion is met.  

 

III. RESULTS AND DISCUSSION 

 

3.1 Problem formulation and numerical results 

 

Genetic algorithm and its operators are described 

previous are coded in MATLAB (R 2011a) for the 

solution of boundary value problem. In problem 

formulation, there are two types of parameter, one is 

genetic algorithm related and another is boundary value 

related. These parameters are described in next section. 

After that, the numerical results are shown in graphical 

and tabular form. 

 

3.2 Genetic algorithm related parameter 

 

In this work, following parameters are used in each 

problem. The initial population size (Np) is set to be 100. 

The selection mechanism is rank based. The crossover 

and mutation probability is set to be 0.5 and 0.4 

respectively. The number of elite parents, which are 

directly goes to next generation without any 

applications of genetic operators, is set to be 10. The 

value of δ is very from problem to problem. The scaling, 

extinction and immigration operator is alternatively 

applied after every 100 number of generations.  

 

The genetic algorithm is stopped when one of the 

following conditions is satisfied. These are as 

following- 

1. When the value of maximum fitness (Fmax) is reach 

to 0.99999. 

2. When the number of generation is, exceed by 

500000. 

 

3.3 Boundary value related parameter 
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Genetic algorithm does not require information of 

derivatives, because it is an optimization tool. Due to 

this, the governing differential equation is converting 

into discretization form. The centred-difference 

formulas, with truncation error of order 0 (h
2
) is used to 

convert differential equation into discretization form. 

 

As shown in the chapter 1, the general fourth-order 

differential equation two-point boundary value problem 

of the form 

 

                                A ≤ x ≤ B                            

 

Together with boundary conditions 

 

i. y(A)=a  y (A)=b   y″(B)=c  y‴(B)=d 

ii. y(A)=a  y″(A)=b   y(B)=c   

y″(B)=d 

 

For the approximation, each derivative term is replaced 

in the discretized form by a difference quotient. The 

interval of the boundary value problem is equally 

partitioned into N+1 subinterval. The length of each 

subinterval is given as 

 

  
   

   
 

 

Where N = 9 is a number of interior nodes. 

For approximating y (xi), y″(xi), y‴(xi) and y‴ (xi) , the 

centre-difference formula is given as 

 

          
                          

  
 

         
                      

     

        
             

        

       
         

  
  

 

With the help of above equation the original differential 

equation is rewrite in discretized form as follows: 

 

                                

  

The residual of i
th
 node (  ) and the overall individual 

residual (R) is given as  

 

                                    

  √∑   
  

              

 

To convert the minimization problem of R into a 

maximization problem of F a mapping of the individual 

residual R is required. Therefore, the fitness function is 

defined as 

 

  
 

   
      

 

The maximization of above fitness function is the main 

task of genetic algorithm. The boundary value related 

parameters are as follows: 

 

1. The number of interior nodes (N = 9). 

2. The step size (h = 0.1). 

3. The boundary conditions at both the ends that are 

vary from problem to problem. 

4. The interval between which the differential 

equation is solved (0 ≤ x ≤ 1). 

 

3.4 Numerical results 

 

3.4.1 Case-1 

 

Euler-Bernoulli beam equation is solving to find the 

deflection of a beam. In this case, one end of the beam 

is fixed and another end is free as shown in figure 4.1. 

 

 
   

    
    

  
       0 ≤ x ≤ 1                                            

 

With following boundary condition 

 

y (0)=0   y  (0)=0   y″ (0)=0   y‴ 

(0)=0 

 

where: E = Modulus of Elasticity (material property) 

I = Moment of Inertia (geometry of material) 

f(x) = load per unit length 

y(x) = deflection (displacement) from vertical 

L = length of the beam 

 

 

L 

f(x) 

x = 0 x =1 

x 

y 
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Fig. 3.1 Cantilever beam with uniformly distributed 

load  

The discretization form of above governing differential 

equation  is given as 

 

   
(
      

  
                         )

 
      

 

To find the exact information of any point we need 

information of four other points in centre-difference 

method. In this case, the value of node number 1 is 

known and all other all unknown.  

 

 
 

Fig. 3.2 Cantilever beam with discretization  

 

For nodes 2 to 11 information is generated initially by 

tangent hyperbolic function and for the information of 

nodes 0, 12 and 13 is founded by the help of given 

boundary conditions. For getting the information of any 

node by centre-difference formula, the information of 

four other nodes is needed.  

 

For example, for getting the information of node 

number 2, the information of node 0, 1, 3 and 4 is 

needed. But the genetic algorithm is only generating the 

information of 2 to 11 number of nodes. To overcome 

this problem the given boundary conditions are also 

convert into discretization form. The boundary 

condition in discretization form is give additional 

information for the solution curve. The genetic 

algorithm is coded in MATLAB (R 2011a) and the 

numerical results are compared with exact solution.  

These results are shown for f(x)/EI = 0.1 and 1 in figure 

3.3 and 3.4 respectively.  

 

 
Fig. 3.3 Graph between exact value and GA value for 

f(x)/EI = 0.1 

 
 

Fig. 3.4 Graph between exact value and GA value for 

f(x)/EI = 1 

 

Table 3.1 Comparison between exact and GA value for 

case-1. 

 

f(x)/EI 0.1 1 

Node 

(i) 

 Exact GA Exact GA 

1 0 0 0 0 

2  0.00023 0.00025 0.0023 0.0025 

3  0.00087  0.00090 0.0087 0.0090 

4  0.00183  0.00188 0.0183 0.0188 

5  0.00304  0.00310 0.0304 0.0310 

6  0.00442  0.00450 0.0442 0.0451 

7  0.00594  0.00603 0.0594 0.0603 

8  0.00753  0.00764 0.0753 0.0764 

9  0.00917  0.00930 0.0917 0.0930 

10  0.01083  0.01097 0.1083 0.1097 

11  0.01250   0.01265  0.1250 0.1265 

Fitness 0.99999 0.99999 

 

In given loading value the genetic algorithm terminated 

before it reached the maximum number of generation 

(500000). The fitness function reached the maximum 

fitness value of 0.99999.  
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use  

y′(x = 0) = 0 
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y(x = 0) = 0 
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y″(x = 1) = 0 
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Imaginary nodes 
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x (m) 

y 
(m

) 

 

3.4.2 Case-2 

 

In this case, the genetic algorithm is used to numerically 

approximate the deflection of electrostatically actuated 

microcantilevers beam which is shown in figure 3.5. 

The governing differential equation in dimensionless 

form is given as [14]. 

 

  

   (    
   

   )  
      

      
(  

      

      
)       

      

And the four dimensionless boundary condition are 

expressed as 

 |         
  

  
|
   

      
   

   |
   

      
   

   |
   

    

 

Where w(x) = 1-fx is the dimensionless width function, 

  
  

  
  is the fringe parameter, 

   
    

   

     
  is the voltage in dimensionless form, 

E = the effective young’s modulus, 

L = the length of the microcantilever beam, 

   = width of the cantilever at the fixed end, 

   = initial gap between the two electrodes, 

v = potential difference between the two electrodes, 

H = thickness of the cantilever beam.  

 

But in this case prismatic microcantilever beam is 

solved. For this the equation is derived for no width 

variation so, the modified governing differential 

equation is expressed by equation  and figure 3.5 show 

the schematic of an electrostatically actuated prismatic 

microcantilever beam. 

 

 
Fig. 3.5 Schematic of an electrostatically actuated 

prismatic microcantilever beam (adapted from [14]). 

  

   (
   

   )  
  

      
(  

      

  
) 

 

With the help of centre-difference formula the equation 

(4.15) is converted into discretization form, which is 

given as 

   
      

      
       

  

     (  
 

  
)            

            

 

With the help of equation above the genetic algorithm 

solves the fourth-order nonlinear boundary value 

problem. The final results are shown in graphical and 

tabular form which is shown in figure 3.6 and 3.7 and 

table 3.2 respectively.  

 
Fig. 4.18 Graph between FEM value and GA value for v 

= 1 V 

 

Table 3.2 Comparison between FEM and GA value for 

case-3. 

v (volt) 1 10 

Node (i) FEM 

(x 10
-9

) 

GA 

(x 10
-9

) 

FEM 

(x 10
-7

) 

GA 

(x 10
-7

) 

1 0 0 0 0 

2 0.002689 0.002953 0.002737 0.003005 

3 0.010182 0.010690 0.010366 0.010885 

4 0.021475 0.022209 0.021870 0.022622 

5 0.035686 0.036623 0.036351 0.037316 

6 0.052046 0.053165 0.053029 0.054186 

7 0.069907 0.071184 0.071244 0.072569 

8 0.088739 0.090148 0.090453 0.091921 

9 0.108130 0.109645 0.110234 0.111820 

10 0.127783 0.129378 0.130286 0.131961 

11 0.147522 0.149170 0.150426 0.152164 

Fitness 0.99999 0.99999 

In this case the FEM solution is also obtain from 

MATLAB (R 2011a) and code is referred from Static 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-4

0

0.5

1

1.5
x 10

-10

 

 

GA

FEM
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y 
(m

) 

x (m) 

and dynamic analysis of electrostatically actuated 

microcantilever using the spectral element method [15].  

 

It’s observed from the graph and tabular data that the 

GA solution is closely match with the FEM solution. 

The genetic algorithm is applicable for both linear and 

nonlinear fourth-order boundary value problems. 

 
 

Fig. 3.7 Graph between FEM value and GA value for v 

= 10 V 

 

IV. CONCLUSION 
 

The fourth-order linear and nonlinear boundary value 

problems are successfully solved by genetic algorithm. 

Genetic algorithm uses the objective function 

information and not the derivative information. 

Diversity is essential to the genetic algorithm because it 

enables the algorithm to search a large region of the 

population. For the solution of boundary value problem 

the solution curve must be smooth in nature. The 

genetic algorithm is versatile in nature because the 

operators of genetic algorithm are user and problem 

dependent and easy to excess.  Genetic algorithm is 

applicable to both linear and nonlinear case without any 

fail. The numerical results from genetic algorithm are 

closely matched with available results. 

 

V. FUTURE SCOPE 
 

In this work the static problem is solved for nonlinear 

fourth-order differential equation. In future, this method 

can be used for dynamic fourth-order differential 

equation. The present method, finds the deflection of the 

prismatic microcantilever beam under varying potential 

difference.  Further, this method can be applied for 

finding the deflection of triangular microcantilever 

beam under varying potential difference.  
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